
ARTICLE

Received 5 Feb 2013 | Accepted 28 Aug 2013 | Published 27 Sep 2013

Strong Casimir force reduction through
metallic surface nanostructuring
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The Casimir force between bodies in vacuum can be understood as arising from their

interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes,

resulting in a complex dependence on the shape and material of the interacting objects.

Becoming dominant at small separations, the force has a significant role in nanomechanics

and object manipulation at the nanoscale, leading to a considerable interest in identifying

structures where the Casimir interaction behaves significantly different from the well-known

attractive force between parallel plates. Here we experimentally demonstrate that by

nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength,

an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a

deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir

force and for large inter-surfaces separations reduces it beyond what would be expected by

any existing theoretical prediction.
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T
he Casimir effect, in its most basic form, can be understood
as a direct macroscopic manifestation of quantum electro-
dynamics, whereby changing the relative position of metallic

or dielectric bodies modifies the zero point energy of the
surrounding electromagnetic (EM) vacuum, resulting in a measur-
able interaction force between them1. This direct connection to
fundamental concepts in quantum mechanics has made this effect
the object of continuous theoretical and experimental attention for
over 60 years since it was first brought to light by Hendrik Casimir.
More broadly, it is also a particular case of fluctuation-induced
interaction phenomena encountered in a wide variety of physical
systems, such as binary liquid mixtures2, cell membranes and
proteins3, and even in cosmology4.

The Casimir force has important technological consequences
and untapped application potential in the field of micro- and
nano-electromechanical systems—engineered devices with move-
able parts ranging from 500mm down to 10 nm in size.
For example, in nanoelectromechanical contact switches5

currently being developed as complements or even potential
successors of conventional complementary metal–oxide–semi-
conductor (CMOS) movable parts are separated by much less
than 1 mm, and accounting for the Casimir force is essential for
their correct design and functioning. It has been shown that this
force significantly modifies both the static and the dynamic
performance of micromechanical devices (MEMS), leads to
unwanted stiction, and is an important source of nonlinear
behaviour6. On the other hand, it has potential uses for non-
contact low-dissipation actuation and tuneability of such
nanomachines7. Beyond nanomechanics, controlling this force
is important for a diversity of fields, ranging from quantum
computing with atom chips8 to searches for non-Newtonian
gravity at sub-micron scales9,10.

The seminal theoretical work of Lifshitz11 on the Casimir force
between planar closely spaced dielectric surfaces led to a complete
framework for computing forces arising from fluctuating EM
fields. Well-established approximations, such as the proximity
force approximation12 (PFA), have been widely utilized to extend
the theory to non-planar complex geometries. The PFA assumes
that the force between non-planar objects is the sum of the forces
between infinitesimal planar sections computed with Lifshitz’s
approach. The theory has been experimentally verified under a
broad range of conditions, e.g., at different length scales, where
either quantum or thermal fluctuations dominate the interaction,
with different materials and even with fluids between the
surfaces13–21. However, with few exceptions22,23, these precision
measurements so far have been limited to planar or near-planar
surfaces. The Casimir effect with complex, non-planar
geometries, where simple approximations are not applicable,
continues to present theoretical and experimental challenges.
While the underlying theoretical principles, approaches and
approximations describing the interaction of EM waves with
metallic and dielectric structures of complex shapes are well
established in classical photonics, the extra challenge stems from
the inherently broadband nature of the Casimir effect, where
fluctuations at all frequencies and wavevectors have to be taken
into account simultaneously. This not only makes the problem
more complex and less amenable to an analytical solution but also
many of the abstractions based on narrow-band intuition become
less applicable.

In the past few years, advances in numerical techniques give
us the tools to compute the Casimir force between complex
structures made of real materials24–26. However, on the
experimental side, due to the difficulties associated with
the reliable fabrication of nanostructured samples and
the measurement of the force, there have been very few
measurements involving nanostructured surfaces. Only recently

the Casimir interaction between nanostructured silicon gratings
and a gold-coated sphere has been measured, with conclusive
evidence of the strong geometry dependence and non-additivity
of the Casimir force22. Specifically, it was observed that the
patterning of periodic nanoscale trenches into a silicon substrate
makes the Casimir force per unit area more attractive than the
corresponding PFA prediction.

Metallic nanostructures have the potential to unveil a new
realm for Casimir force manipulation. Indeed, they support
collective surface EM modes called surface plasmons, which can
propagate along the surface, decay exponentially away from it,
and have a characteristic frequency of the order of the plasma
frequency. In the simple plane–plane configuration, it is known
that surface plasmons affect the Casimir force in a non-trivial
manner, featuring an attractive (repulsive) contribution to the
force for distances shorter (larger) than the plasma wavelength27.
Nanostructured surfaces with tailored plasmonic dispersion
relations have already impacted classical nano-photonics, with
applications ranging from extraordinary light transmission to
surface-enhanced Raman scattering28,29. Likewise, metallic
structures, with strong deviations from the planar geometry and
possessing geometrical features on very small scales, are likely
to give significant new insights into potential Casimir devices.
Here we investigate the impact of nanostructuring one of
the interacting metal surfaces at scales below the plasma
wavelength. We have designed and fabricated high aspect ratio
nanostructured gold gratings with critical dimensions ranging
from 90 to 200 nm, and we have then performed high precision
measurements of the Casimir force in vacuum between a gold-
coated sphere and the nanostructured gold gratings. A new
regime in the Casimir interaction has been observed, significantly
different from the well-known attraction between parallel plates.

Results
Sample fabrication. Fabrication of large area Au nanostructures
with uniform sub-100 nm in-plane dimensions and vertical
sidewalls with depth Z200 nm (aspect ratio larger than one)
remains challenging. The standard dry etching techniques, for
example, reactive ion etching, do not generally work well for
noble metals because they generate large amount of sputtered
material that re-deposit onto the structures being fabricated.
Focused ion beam or ion milling may provide an alternative, but
even in this case avoiding re-sputtering, creating deep vertical
sidewalls and uniform depth, and ensuring the metal on the
surface is pristine is close to impossible. Techniques based on
gold deposition, for example, lift-off or sputtering, are very
popular but their applicability is limited to nanostructures with
small aspect ratio (o1), while achieving narrow structures with
tall vertical sidewalls and uniform height is limited by the
inability to uniformly fill deep trenches during deposition. We
were able to achieve this by first using state-of-the-art high-vol-
tage 100 keV electron beam lithography to generate structures of
the needed size and geometry in e-beam resist materials, and then
using them as templates for pure gold deposition by either elec-
troplating or sputtering. The e-beam parameters were carefully
optimized to achieve the needed aspect ratios, separately for
trenches in a positive tone resist for electroplating, and for ridges
in a negative tone resist for sputtering. The gold deposition
processes were also highly optimized to achieve uniform plating
thickness and highly conformal sputtering coverage, both with
low surface roughness. Figure 1 show scanning electron micro-
scopy (SEM) images with details of the gratings used. The grat-
ings dimensions are: width w from 90 to 200 nm, period
p from 250 to 800 nm and height h from 200 to 500 nm. A typical
sample layout is shown in Fig. 1b. The grating area has
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dimensions of 50� 50 mm2 and is surrounded by flat uniform
gold films used for reference and calibration (see Methods).
Figure 1c shows the uniformity of the nanofabricated surfaces
and a cross-section of a single grating element is shown in Fig. 1d.
(See Methods for details on surface roughness and uniformity.)

Force measurement. The experimental setup for measuring the
Casimir effect is similar to the one we have used in previous
work30, which allowed us to perform the most precise
measurement to date of the force between metallic surfaces.
Figure 1a shows a schematic of the experimental system used (see
details in Methods). It consists of a metal-coated sphere of radius
R¼ 151.7±0.2 mm, attached to a micromechanical torsional
oscillator. The metallic grating is attached to an optical fibre that,
at each distance d, is used to keep the sphere-grating separation
stable within half a nanometre. As the grating is brought into
close proximity of the sphere, the interaction between the two
surfaces produces a shift in the oscillator resonance frequency,
which is used to extract the gradient of the Casimir force, qdFsg.

The measured force gradient shows finite-size effects when the
sphere is near the edge of the gratings. To avoid these effects, the
sphere was positioned close to the centre of the samples under
investigation. The measurement results become experimentally
indistinguishable from each other once the centre of the sphere is
at a distance of the order of or larger than 10 mm from the edge of
the sample (see Methods).

The apparatus was calibrated using a known, calculable
interaction—the electrostatic one. Two different calibration techni-
ques were employed: the first one used the flat continuous film in
the immediate vicinity of the grating for calibration just before
performing any measurement on top of the grating area; the second
one performed the whole electrostatic calibration process over the
grating itself. The latter technique required calculating the system
capacitance, which was done by solving the electrostatic problem
using a finite elements analysis. Both procedures produced
experimentally indistinguishable results (see Methods and
Supplementary Fig. S2). The use of a sphere instead of another
planar surface avoids the problem of keeping the two objects
parallel but complicates the exact theoretical description. A
common approach to bypass this difficulty relies on the PFA: this
approximation assumes that when the sphere’s radius is much
larger than the sphere-grating distance d (d=R � 1), the relevant
EM field modes see the sphere as effectively planar and one can
then approximate the sphere’s surface as a collection of planar
elements. Within this procedure, the force gradient can be
calculated as the sum of several local parallel plane interactions,
which can be evaluated using the Lifshitz formula. Each local
pressure depends on the distance between the sphere and the
grating surface at that location, giving as a result

@dFPFA
sg ðdÞ ¼ 2pR½fPppðdÞþ ð1� f ÞPppðdþ hÞ�

� 2pRPPFA
pg ðdÞ; ð1Þ

where Ppp(d) is the Lifshitz formula for the Casimir pressure
between two parallel planes11. In the previous expression, the
impact of nanostructuring is captured in the grating’s filling factor
f¼w/p, and in the limit of f-1 we recover the usual result for the
sphere-plane configuration.

Figure 2a shows the Casimir pressure for several gold
nanostructured gratings with different dimensions. To simplify
the data analysis, it is convenient to normalize the experimentally
measured sphere-grating Casimir force gradient, qdFsg, dividing it
by the factor 2pR. Within PFA, this ratio represents the data in
terms of the equivalent plane-grating pressure Ppg. As expected, as
the filling factor is reduced the Casimir pressure is also reduced.
This is a simple effect showing the dependence of the Casimir effect
on the optical density of the involved bodies: nanostructuring leads
indeed to a more diluted optical permittivity, which implies less
force. In addition, the Casimir interaction for samples with similar
filling factors appears to be independent of the height of the
grating. For samples of similar geometry, the results are
substantially the same and do not depend on the sample
preparation methodology, that is, sputtering or electroplating. To
clearly identify the influence of the grating geometry on the
Casimir interaction, it is helpful to compare data obtained in
nanostructured gratings having similar filling factors for which
PFA predicts about the same result. Figure 2b,c show the data for
two specific electroplated samples we will focus on in the remainder
of the paper. Their filling factors are f1¼ 0.360 (Fig. 2b) and
f2¼ 0.387 (Fig. 2c). The dashed lines show the behaviour of the
plane-grating pressure as calculated within a PFA treatment. It is
clear from Fig. 2b,c that, in our case, the PFA gives a poor
description of the equivalent plane-grating Casimir pressure.

This disagreement is even more evident in Fig. 3, where the
experimental data are normalized by the corresponding PFA
expressions. By performing this normalization one suppresses
geometrical effects associated with the filling factor and with the
redefinition of the distance due to the height of the grating. As is
clear in Fig. 3, this normalization gives very different results even
for samples with similar filling factors. At short separations the
experimental data show an equivalent pressure larger than the
one predicted by PFA in equation (1), that is, the force per unit area
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Figure 1 | Experimental configuration and sample details. (a) Schematic

drawing of the experimental configuration used to measure the Casimir

force between a gold-coated sphere and a nanostructured grating. The

sphere is attached to the torsional plate of a micromechanical oscillator and

the nanostructured grating is fixed to a single-mode optical fibre. The

optical fibre is used to monitor the distance between the bottom of the fibre

and the supporting substrate, while the micromechanical oscillator provided

a capacitive measurement of the Casimir interaction. (Inset) Definitions of

the geometrical parameters of the metallic nanostructures. (b–d) SEM

images of typical samples used in the reported experiments. (b) The

nanostructured gratings are limited by two uniform films used for

calibration and reference (scale bar, 100 mm). (c) Magnified detail of the

grating area showing the high spatial uniformity achieved in these samples

(scale bar, 400 nm). (d) SEM cross-sectional photograph of a single grating

element (scale bar, 100 nm).
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becomes more attractive, similarly to what has been observed in
silicon gratings22. However, at large separations, the equivalent
Casimir pressure is reduced with respect to the PFA prediction, that
is, the force per unit area becomes less attractive, reaching values
more than two times smaller than that predicted by PFA. The
separation at which the crossover between these two regimes occurs
is roughly proportional to the period of the grating. This is the first
experimental report of such significant pressure reduction with
respect to the PFA prediction and of a crossover from enhancement
to reduction of the Casimir force per unit area. The same behaviour
has been observed in each one of the 17 metallic gratings measured
during this experiment, independently of the method used to
fabricate the gratings. The inset in Fig. 3 shows the ratio Ppg=PPFA

pg
for a grating fabricated using sputtering techniques.

Discussion
An apparent trend is also clear when comparing data of
nanostructures with similar filling factors but different periods:
at short distances, the shorter the grating period the larger the
enhancement of the Casimir pressure with respect to the PFA,
while at large distances, the opposite happens—shorter period
leads to a stronger reduction of the Casimir force. As at large
distances @dFPFA

sg ðdÞ / d� 4, the data shows that the force
gradient or the equivalent Casimir pressure decreases faster than
the inverse fourth-power distance. In addition, for fixed filling
factor the rate of decrease is larger for smaller period gratings.
This latter observation can be understood from a scaling
argument (see Methods). At these large distances, this behaviour
is in contradiction with what is intuitively expected: in the limit of
small period, one should progressively recover the plane–plane
result.
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Figure 2 | Casimir pressure between the sphere and the gratings as a function of their separation. (a) Measurements done for metallic nanostructured

samples with different parameters. The data show that the main effect of the nanostructure is to reduce the values of the pressure according to the

sample-filling factors. (b,c) Results for two samples of similar filling factors (f1¼0.360 and f2¼0.387, respectively). Experimental measurements

(dots with error bars), proximity force approximation as in equation (1) (dashed lines), and modal approach calculation as in equation (2) (solid lines). Error

bars are the variance of the mean measured pressure over the 45 repetitions of the experiment for each sample. They are plotted every fifth data

point to increase the clarity of the figure (see Methods for more details). Geometrical parameters of the gratings are indicated as p (period)/w (width)/h

(height), all in nanometres.
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Figure 3 | Normalized Casimir pressure. Main figure: equivalent plane-

grating Casimir pressure normalized by the PFA expression in equation (1),

as a function of separation between the sphere and the grating for samples

made with electroplating of high aspect ratio molds. Data are presented

with dots and error bars for sample 1 (blue) and sample 2 (red). A weighted

rolling average over a variable bin width is performed for the pressure. The

error bars are obtained through the propagation of errors in the binning

process, as described in the Methods section. The full lines correspond to

the modal approach numerical prediction given in equation (2). Parameters

are the same of Fig. 2. The observed fluctuations on the experimental data

originate from the rolling average. The effect of points far from the mean is

extended over the bin where the average is performed. Inset: characteristic

results for samples made by sputtering of Au onto hydrogen silesquioxane

structures (see Methods).
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Deviations from PFA are not surprising and are known, at least
theoretically, for some simple geometries. For example, in the sphere-
plane configuration PFA overestimates the exact result, the leading
correction to PFA being of the order d/R (refs 31,32). In the case of a
doped silicon grating with micrometer features interacting with a Au
sphere it was shown that PFA instead underestimates the correct
result for plane-grating distances below 500 nm (ref. 22). To improve
on our PFA expression (1) we numerically computed the equivalent
plane-grating pressure Ppg for our configuration taking into account
the small size and the high conductivity of our nanostructures, and
approximated the sphere-grating force gradient in this modified PFA
as 2pRPpg(d). Within the scattering formalism25,26, the pressure is
expressed as a series over Matsubara frequencies xl¼ 2plkBT/:

PpgðdÞ ¼ � kBT@d

X1

l¼0

0Tr ln½1�RpðixlÞ � wpgðd; ixlÞ

� RgðixlÞ � wgpðd; ixlÞ�: ð2Þ
Here, T is temperature, Rp(g) is the reflection operator of the

plane (grating), and wij are plane-wave translation operators
between the two surfaces. The primed sum means that the l¼ 0
term is counted with half weight. The trace operation sums over
the two light polarizations, over different Brillouin zones of the
periodic structure, and integrates over the parallel wavevectors kx

(direction of grating modulation) and ky (invariant direction for
grating) from �p/p to p/p and �N to N, respectively. The
broadband nature of the Casimir interaction is apparent in the
above expression. The reflection operators are computed from the
solution to Maxwell equations for the EM field conveniently
decomposed in terms of the natural modes of the structures26. In
our calculation, the temperature is set to T¼ 300 K and for
simplicity we model the permittivity of gold using a Drude model
EðoÞ ¼ 1�O2

p=ðo2þ iGoÞ with plasma frequency Op¼ 8.39 eV
and dissipation rate G¼ 0.0434 eV. Numerically, the errors in the
computation of the Casimir pressure mainly arise from the
truncation of the Matsubara sum and of the reflection and
translation operators, represented as finite-size matrices. In our
implementation, the total theoretical/numerical error is less than
2% over the entire pressure-displacement curve. The accuracy of
our numerical results could nevertheless be affected by the model
and optical parameters chosen to describe the actual permittivity
of gold used in our samples. For example, a more accurate
description of the optical properties for gold requires the
introduction of the interband electronic transitions in the
dielectric function. Generally, a good description of this effect is
given by using the so-called six-oscillator Drude–Lorentz model.
We have checked that the inclusion of the interband contribution
results in a plane-grating pressure a few per cent stronger than
the one given by the simple Drude model, and that at large
distances its effect is negligible, as the low-frequency behaviour is
dominated by the Drude contribution. On the other hand, the use
of a plasma model (G¼ 0) produces similar numerical results for
the pressure in the whole experimental range.

The solid lines in Fig. 2b,c are the result of the modal approach
numerics for the equivalent plane-grating pressure Ppg. At short
distances, this approach agrees with the data better than PFA, as was
already observed in the case of silicon gratings33. At large distances,
however, we observe an even stronger disagreement with the
experiment. By normalizing our numerical results obtained from
equation (2) by the values calculated using PFA given in equation (1),
the disagreement at large distance becomes even more evident
(Fig. 3). In contradiction with the experiment, the two solid lines
describing this ratio have values always larger than 1, attaining the
maximum at distances of the order of the grating period. The ratio
tends to 1 in two opposite limits: at short distance, substantially
confirming the validity of the PFA (Supplementary Fig. S5) and at

large distance, where both the equivalent plane-grating PFA pressure
and the pressure calculated using the previous numerical approach
tend to the same value, that is, the Lifshitz plane–plane formula (see
details in Methods). Several checks, including a comparison with the
Casimir plane-grating pressure computed within the framework of
an effective medium approach34, have confirmed the validity of our
calculation for the plane-grating geometry.

While disagreement with the usual PFA, Equation (1), was
expected, the one with its modified version 2pRPpg(d), using an
exact theoretical description for the equivalent plane-grating
interaction, is unanticipated. Two main differences distinguish
our numerical calculation and the experimental setup: the PFA
treatment of the sphere’s curvature, that is, the calculation of the
equivalent plane-grating pressure, and the assumption of an
infinitely periodic system, which is in contrast with the finiteness
of all bodies used in the experiment. Both assumptions rely on
common approximations that are known for providing a good
theory–experiment agreement for planar unstructured samples, as
long as d is much smaller than R and any lateral dimensions of
the sample. As a check of the sensitivity of our experiment, we
have performed Casimir measurements with the sphere on top of
the flat metallic pads, which have lateral dimensions similar to the
grating (Supplementary Fig. S4). We found good agreement
between the data and the standard theoretical treatment that uses
PFA, neglecting any finite-size effects of the pads as well as an
excellent agreement with the previous measurements of the
Casimir force in the sphere-plane configuration. In this case,
deviations due to the curvature of our sphere tend to reduce the
force with respect to its PFA value with a difference of less than
1% for distances shorter than 1 mm (ref. 31). The nanostructuring
of the metallic surface, however, introduces into the problem
additional length scales and substantially modifies the mode
structure between the two plates. In contrast to previous
experiments22, here we explored distances larger than the
grating’s period, where we observed the strong deviations from
the theoretical values for the effective plane-grating pressure.
Unfortunately, state-of-the-art numerical techniques cannot solve
exactly the sphere-grating problem for our case given the
disparate ranges of length scales present in the experiment
(100’s nm sized grating features, 4100mm sized sphere and
o1 mm separation distances), preventing at the moment an in-
depth study of the validity of a PFA treatment of the sphere’s
curvature in our experimental sphere-grating geometry.

In conclusion, we have shown that by nanostructuring the
metal surface of interacting bodies at scales below the plasma
wavelength, a new regime in the Casimir interaction can be
achieved. This regime is significantly different from the well-
known attraction between parallel plates and is characterized by a
crossover from enhancement to strong reduction of the Casimir
force. For large inter-surfaces separation, the Casimir interaction
decreases faster than the usual d� 4 power law, reaching values
more than two times smaller than the one predicted by the
proximity force approximation for planar-like geometries. We
demonstrated that existing state-of-the-art theoretical modelling,
based on the proximity force approximation for treating the
curvature of our large-radius sphere and an exact ab initio
scattering analysis of the resulting effective plane-grating
geometry, does not reproduce the experimental findings. The
development of a full numerical analysis of the sphere-grating
geometry, capable of dealing with the disparate length scales
present in our experiment, remains an open problem.

Methods
Sample fabrication. The nanostructured gratings used in this work were fabri-
cated using two different procedures as described below.
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Sputtering of gold onto hydrogen silsesquioxane (HSQ) structures. HSQ is an
inorganic negative tone e-beam resist, which is basically a spin-on dielectric with
silicon dioxide-like physical properties. HSQ was patterned with an e-beam
lithography system, developed and cured. In Supplementary Fig. S1, we show a
HSQ grating with lines having a height of 380 nm and width of 40 nm (E10:1
aspect ratio structure).

After patterning, these HSQ structures were coated with Au by conformal
sputter deposition. The conformality of our deposition is around 0.25 and hence
the widening of the lines is minimal but thick enough to completely cover the
dielectric with Au. After deposition of 130 nm of metal, a 40-nm-wide line becomes
aE100-nm-wide line. This results in 4:1 aspect ratio metallic nanostructures. This
method does have its limitations in the smallest width achievable due to the
minimal thickness required for Au in Casimir measurements. As HSQ itself has
very smooth surfaces after patterning, it results in a smooth Au surface when
coated. The Au surface quality from atomic force microscopy (AFM) measure-
ments show that the deposited Au has a RMS surface roughness of E1.0 nm and is
comparable to the surface roughness of Au deposited on single crystal silicon.
Varying structures with different widths (100–200 nm) and period (300–800 nm)
were fabricated so that structures can be compared in measurements with different
dimensions but similar filling factors.

Electroplating of high aspect ratio molds. In this method, the gold gratings are
fabricated by electron beam lithography and electroplating. Briefly, a very high-
resolution positive e-beam resist (ZEP520) with thickness 500 nm is spun on Si
chips coated with 5 nm Ti, 200 nm Au and 5 nm Ti layers. The resist is exposed in
an e-beam lithography system at 100 kV and developed in hexyl acetate to form a
high-resolution, high aspect ratio mold. The top Ti layer is then etched off in
reactive ion etching, so that the Au is exposed at the bottom of the mold (the top Ti
layer is necessary due to the poor adhesion of the e-beam resist to the Au surface).
Next, Au electroplating is performed in an AuCN bath at room temperature using
a current density of 30 A m� 2. The deposition rate is measured experimentally,
and the time is varied to attain the desired Au thickness. After electroplating, the
chip is rinsed and the e-beam resist stripped in a solvent bath. The plated structures
are characterized by optical profilometry, SEM and AFM. The measured RMS
roughness of the lines is on the order of 1.5 nm, and the thickness variation across a
structure is approximately 10 nm.

Experimental setup and calibration. We use a torsional oscillator (Fig. 1a) to
measure the Casimir force between the gold sphere and the nanostructured grat-
ings. The oscillator plate and a sapphire sphere are coated with an E1 nm layer of
Cr followed by an E200 nm-thick layer of Au. The oscillator is a 500� 500mm2,
3.5 mm-thick heavily doped polysilicon plate suspended at two opposite points by
serpentine springs. Serpentine springs were selected over conventional torsional
rods because for equal sensitivity, they occupy a smaller region and reduce vertical
sag of the torsional paddle. The springs are anchored to a silicon nitride-covered Si
platform. When no net torque is applied, the plate is separated from the platform
by an E2 mm gap. Two independently contacted polysilicon electrodes located
under the plate are used to measure the capacitance (Andeen-Hagerling AH2700A
capacitance bridge) between the electrodes and the plate. The oscillator/sphere
assembly is mounted on a 5-axis stepper motor driven positioner (Newport 561
series). The nanostructured surface is mounted on a xyz piezo-driven, closed-loop,
70mm range per axis (MadCity Labs Nanopositioning System). Both positioning
systems, which are attached to a rigid, 5 kg stainless steel structure, allow for
positioning and repeatability better than 0.2 nm. The whole assembly is contained
in a vacuum chamber maintained at P¼ 2.6� 10� 5 Pa. There is passive magnetic
damping between the assembly and the vacuum chamber. The vacuum chamber is
mounted on an optical table with active vibration isolation control (TMC Precision
Electronic Positioning System). As measured at the sample’s position, the vibra-
tional amplitude of motion is smaller than 10 pm in the 10–1,000 Hz range. The
sphere used in the experiments has a radius of curvature R¼ 151.7±0.2 mm. The
physical parameters for the sphere (radius and sphericity) were determined by
means of SEM. Both were found to be within the specifications of the manu-
facturer. Deposition-induced asymmetries were found to be smaller than 10 nm,
the resolution of the SEM. A single-mode optical fibre (Corning SM-28) is rigidly
attached to the nanostructured grating, and it is used to constantly monitor the
absolute separation D between the end of the fibre and the substrate below the
torsional oscillator35. The RMS error in the interferometric measurements is
dD¼ 0.25 nm, dominated by the overall stability of the closed-loop feedback
system. Details on how the separation d between the sphere and a uniform sample
(that is, the pad in Fig. 1b) is obtained can be found in a previous work36.

The apparatus is calibrated using the electrostatic interaction between the sphere
and the grating/pad plate. The torsional spring constant k¼ (8.85±0.03) Nm is
found in this way. Once the system is characterized a potential difference V0 6¼ 0
between the sphere and the pad is applied to minimize, within the experimental error,
the electrostatic force. We checked that V0 is independent of the position when the
sphere is either on top of the pad or above the nanostructured surface.

Samples grown by metal sputtering have equal pad and grating heights, as
determined by AFM measurements. Consequently, the distance D measured
between the fibre and the pad was used for obtaining the distance d between the
apex of the sphere and the nanostructured surface. In contrast, in samples grown

by electroplating the pad is not as high as the grating, the height difference
depending on the preparation conditions. In this case, two different approaches
were used.

In the first approach, the capacitance and the electrostatic force between the
sphere and the grating were measured as a function of separation d. These values
were compared with calculations performed using a commercial finite element
electrostatic solver. To this aim, we first calculated the capacitance per unit of area
between a plane and a grating by numerically solving the electrostatics equations.
The modelling was conducted using Comsol 3.51 software. Translational symmetry
in the direction of the grating lines allows us to formulate the problem in 2D, while
the periodicity in principle allows us to model only one period. In practice, the
model included two periods, because it was computationally affordable and
provided for better visualization. Parametric study as a function of gap was
performed by smoothly deforming the mesh without re-meshing for each gap to
avoid numerical noise in the capacitance derivative. Two models were created: one
with a bigger domain suitable for modelling gaps above 500 nm, while the other
with a smaller domain was used for the gaps in the 100–600 nm range. For each
model, a mesh was created with higher density of elements near the ends of grating
fingers. These meshes were further refined twice and the modelling repeated for
each refinement. The refined meshes have 164,460 (137,768) degrees of freedom,
15,093 (13,371) mesh points and 29,696 (26,288) triangular elements for the larger
(smaller) model domains. Typical relative numerical error in the capacitance values
between the two models and the three different meshes within each of the models is
below 2� 10� 3 with better agreement between the finer mesh cases. This
imprecision is significantly below the other sources of uncertainly in the
experiment. The metal surfaces were assumed perfect conductors at fixed electrical
potentials. To calculate the capacitance as a function of separation distance, the
mesh was smoothly deformed as the plane-grating separation was changed.
Solutions at different mesh densities were compared to ensure numerical accuracy.
Finally, PFA was used to obtain the gradient of the capacitance for the sphere/
grating configuration, @dC. As the measured values of capacitance are inherently
affected by parasitic capacitance, the comparison with the electrostatic force was
deemed more reliable. In this scenario, the gradient of the capacitance with respect
to the separation was used to determine the calculated electrostatic force Fe¼ 1/
2@dCDV2, where DV is the potential difference between the two plates of the
capacitor. It was observed that the experimental curve, when the data was plotted
as a function of d (when the sphere is on top of the grating) has to be shifted by a
sample-dependent amount di

04(E15 nm) to make the calculated and measured
values coincide.

In the second approach, the height difference dii
0 between the pad and the ridges

was measured using an AFM. This difference was taken into account when
determining the separation between the sphere and the nanostructured surface.
Specifically, for the sample with h¼ 400 nm, w¼ 130 nm, p¼ 350 nm,
di

0 ¼ (17±2) nm was obtained by a least square fitting of the electrostatic force
with a single-fitting parameter, as shown in Supplementary Fig. S2. Using the AFM
method, dii

0 ¼ 17±1 nm was found. In the latter case, the error is the s.d. of the
values found when measuring the height difference at 25 different points. As both
methods yielded identical results within the experimental error, method (ii) was
preferred due to its smaller intrinsic error.

Data reported in Fig. 3 were obtained by performing a weighted rolling
average over n consecutive points. The value of the pressure at position �d is

PpgðdÞ ¼
Pn� 1

i¼0 Ppgðdþ iDddÞdP� 2
pg ðdþ iDddÞPn� 1

i¼0 dP� 2
pg ðdþ iDddÞ

; ð3Þ

where d ¼ ð1=nÞ
Pn

i¼0ðdþ iDddÞ, and dþ iDdd represent the n different separations
considered. dPpg is the random error in the determination of the pressure Ppg

at distance d. The random error of the weighted rolling average is

dPpgðdÞ ¼
Pn� 1

i¼0 dP� 2
pg ðdþ iDddÞ

h i� 1=2
. The number of data points n used in the

rolling average varies as a function of separation: n¼ 10 for do300 nm and then it
increases linearly with separation to reach a value of n¼ 35 at d¼ 1,000 nm, the
maximum separation between the sphere and the grating. The total error in the
pressure is obtained as the addition of the systematic and random errors. The
maximum contribution to the systematic error dP

syst
pg arises from the uncertainty in

the measurement of the resonant frequency (dfr¼ 6 mHz) and from the error in the
measurement of the sphere’s radius R. The systematic error is smaller than the
random error in the whole separation range. Between 300 nmodo1,000 nm,
dP

syst
pg � 0.2 mPa. In the binning process, the error in the separation is determined as

the variance of the different separations used, which is dominant when compared
with the error in the measurement of the separation ddE2 nm. The experimental data
before this smoothing procedure are shown in Supplementary Fig. S3.

The measurements reported in Fig. 3 and in Supplementary Fig. S3, were
performed at the centre of each grating. To find the centre of the grating, the sphere
was scanned on top of the sample until a region where the measured signal did not
depend on the position was found. One of such scans is shown in Supplementary
Fig. S4. This scan was performed in 0.5 mm intervals along the long axis of the pad-
grating system. Outside the pads (left and right parts of the figure), the separation
between the sphere and the sample is large and as a consequence, the signal is very
small. For the measurements performed on top of the pads and on top of the
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grating, we observed that there is a finite region (approximately 30 mm across)
where the signal is independent of the position.

Theoretical and numerical methods. Within the scattering approach to Casimir
physics, the calculation of the plane-grating Casimir pressure is essentially reduced to
the computation of the reflection operators R of the plane and the grating. For the
plane, Rp is given by the usual Fresnel coefficients. For the grating, Rg is computed
following the modal approach26. We divide the grating geometry into three regions
(see inset of Fig. 1a): (1) the vacuum, homogeneous region z4h above the grating,
(2) the grating region 0rzrh, periodically modulated along the x direction and
invariant along the y direction, and (3) the Au bulk, homogeneous region zo0 below
the grating. Within each ith region, the EM field can be expressed as a series in terms
of the eigenvectors, which are solutions to Maxwell equations, namely

FðiÞðx; y; z; tÞ ¼
X

m

AðiÞm Y ðiÞm ðxÞeilðiÞm zeiðky y�otÞ: ð4Þ

Here F denotes any component of the electric or magnetic field, and the sum is
over a discrete set of complex eigenvalues lðiÞm ; the corresponding eigenvectors are
denoted by YðiÞm . These quantities are computed using the quasi analytical approach
discussed in the reference 26. The complex coefficients AðiÞm are then determined by
imposing boundary conditions on the vacuum-grating and grating–bulk interfaces,
and finally the reflection operator Rg is obtained and employed in the Matsubara
series expression for the Casimir pressure.

Some analytical predictions can be made about the plane-grating pressure.
First, at very large separations it is dominated by the low-frequency/low-
momentum behaviour of the reflection matrices: above E3 mm the zeroth
Matsubara term is practically describing the whole interaction. For this term, using
the Drude model for Au it is also possible to analytically solve for the eigenvalues
and the eigenvectors of the EM field expansion in the grating37. Only the transverse
magnetic components matter, and in this limit the corresponding reflection
matrices are equal to unity, for both the plane and the grating (the latter fact was
numerically verified). As the PFA expression for the plane-grating pressure,

PPFA
pg ¼ fPppðdÞþ ð1� f ÞPppðdþ hÞ; ð5Þ

shows exactly the same behaviour in the same distance range, the ratio Ppg=PPFA
pg

must go to 1 at separations much larger than the ones accessed in the experiment
(see Supplementary Fig. S3).

Second, to gain further insights into the large-separation behaviour, we
calculated the plane-grating Casimir pressure using an effective medium
approximation (EMA) for the nanostructure38. This approximation consists in
replacing the spatial-dependent electric permittivity E(o,r) describing the
geometrical and optical properties of the nanostructure by an effective
homogeneous (not necessarily isotropic) permittivity, $E EMA. The EMA is expected
to be valid for separations much larger than the geometrical features of the
nanostructure (above E5 mm). The EMA permittivity tensor is modelled as
that for an uni-axial anisotropic medium30, $E EMA ¼ diagðExx; Eyy; EzzÞ with
Eyy¼ Ezz¼ EDfþ (1� f) and Exx¼ ED[fþ ED(1� f)]� 1, where ED is the Drude
permitivity and the resulting EMA plane-grating pressure is calculated following
the technique of previous work34. As follows from Supplementary Fig. S5, the EMA
fails to reproduce the exact results for distances below 5 mm. In the expected range
of validity of EMA, the ratio PEMA

pg =PPFA
pg is always close to 1.

Third, at short (dr400 nm) and intermediate (400 nmrdr1,000 nm)
separations, the respective enhancement and reduction of Ppg=PPFA

pg are stronger for
the grating with the shorter period (Fig. 3). It should be noted that the two
fabricated samples have slightly dissimilar filling factors. However, it can be
numerically shown that for gratings with identical filling factors, an analogous
behaviour occurs. This feature can be understood with the help of the following
scaling argument. In connection with the scale invariance of Maxwell equations,
the plane-grating Casimir pressure satisfies the scaling property Ppg(d,p,f,l)¼ p� 4

ppg(d/p, 1, f, l/p), where l denotes all other characteristic lengths in the problem
(height, Au plasma wavelength, thermal wavelength, etc.). Let us suppose that in
the distance regimes considered, Ppg does not appreciably depend on l. Then, for
two gratings with identical filling factors (f¼ f1¼ f2) but different periods (p1op2),
the respective pressures are given by P1 � p� 4

1 Pðd1=p1; 1; f Þ and
P2 � p� 4

2 Pðd2=p2; 1; f Þ. One expression can be obtained from the other by using
the set of linear transformations: P2¼ (p1/p2)4P1 and d2¼ (p1/p2)d1. As a direct
consequence, if the pressure can be approximately described by a power-law
Ppd� n in a certain region of distances, then P1pd� n implies P2p(p1/p2)4� n

d� n. Therefore, at the same plane-grating distance, P2oP1 for no4 (this is the
scenario in Fig. 3 at short separations) and P24P1 for n44 (this is the scenario in
Fig. 3 at large separations). Small deviations from the above scaling argument are
due to the role played by l, and also to the slightly different filling factors of the two
fabricated samples.
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